14 research outputs found

    Multi-Temporal X-Band Radar Interferometry Using Corner Reflectors: Application and Validation at the Corvara Landslide (Dolomites, Italy)

    Get PDF
    From the wide range of methods available to landslide researchers and practitioners for monitoring ground displacements, remote sensing techniques have increased in popularity. Radar interferometry methods with their ability to record movements in the order of millimeters have been more frequently applied in recent years. Multi-temporal interferometry can assist in monitoring landslides on the regional and slope scale and thereby assist in assessing related hazards and risks. Our study focuses on the Corvara landslides in the Italian Alps, a complex earthflow with spatially varying displacement patterns. We used radar imagery provided by the COSMO-SkyMed constellation and carried out a validation of the derived time-series data with differential GPS data. Movement rates were assessed using the Permanent Scatterers based Multi-Temporal Interferometry applied to 16 artificial Corner Reflectors installed on the source, track and accumulation zones of the landslide. The overall movement trends were well covered by Permanent Scatterers based Multi-Temporal Interferometry, however, fast acceleration phases and movements along the satellite track could not be assessed with adequate accuracy due to intrinsic limitations of the technique. Overall, despite the intrinsic limitations, Multi-Temporal Interferometry proved to be a promising method to monitor landslides characterized by a linear and relatively slow movement rates

    Sentinel-1 and Ground-Based Sensors for Continuous Monitoring of the Corvara Landslide (South Tyrol, Italy)

    No full text
    The Copernicus Sentinel-1 mission provides synthetic aperture radar (SAR) acquisitions over large areas with high temporal and spatial resolution. This new generation of satellites providing open-data products has enhanced the capabilities for continuously studying Earth surface changes. Over the past two decades, several studies have demonstrated the potential of differential synthetic aperture radar interferometry (DInSAR) for detecting and quantifying land surface deformation. DInSAR limitations and challenges are linked to the SAR properties and the field conditions (especially in mountainous environments) leading to spatial and temporal decorrelation of the SAR signal. High temporal decorrelation can be caused by changes in vegetation (particularly in nonurban areas), atmospheric conditions, or high ground surface velocity. In this study, the kinematics of the complex and vegetated Corvara landslide, situated in Val Badia (South Tyrol, Italy), are monitored by a network of three permanent and 13 monthly measured benchmark points measured with the differential global navigation satellite system (DGNSS) technique. The slope displacement rates are found to be highly unsteady and reach several meters a year. This paper focuses firstly on evaluating the performance of DInSAR changing unwrapping and coherence parameters with Sentinel-1 imagery, and secondly, on applying DInSAR with DGNSS measurements to monitor an active and complex landslide. To this end, 41 particular SAR images, coherence thresholds, and 2D and 3D unwrapping processes give various results in terms of reliability and accuracy, supporting the understanding of the landslide velocity field. Evolutions of phase changes are analysed according to the coherence, the changing field conditions, and the monitored ground-based displacements
    corecore